4x^2-19x+23=4x+8

Simple and best practice solution for 4x^2-19x+23=4x+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x^2-19x+23=4x+8 equation:



4x^2-19x+23=4x+8
We move all terms to the left:
4x^2-19x+23-(4x+8)=0
We get rid of parentheses
4x^2-19x-4x-8+23=0
We add all the numbers together, and all the variables
4x^2-23x+15=0
a = 4; b = -23; c = +15;
Δ = b2-4ac
Δ = -232-4·4·15
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{289}=17$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-17}{2*4}=\frac{6}{8} =3/4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+17}{2*4}=\frac{40}{8} =5 $

See similar equations:

| −3x−8(2x−5)=−5x−6(x+8) | | 2x²-5x-18=18 | | 3(2x+1)=-10 | | 10x+20=5x-50 | | (x+4)/(x-2)=13/12 | | 6l=42 | | h( | | 6a^2=10–11a | | 6a2=10–11a | | -5x-18=3(6-x)^0.33 | | X^2-15x+56=(x-7)(x-8) | | X^+7x+11=0 | | 10+4x=2x-8 | | 6/x+x/4=2 | | 3x^-37x+70=0 | | 4^(x+2)-4^(x-2)=1020 | | x/2+2x/3=1 | | 5a-2=-9a+10 | | (k+1/2)=9/6 | | 10-2(x-)1=8 | | (k+1/2)2=9/6 | | (k+1/2)2=1/2 | | (3y^2+7)/2=5 | | 7x+2(2)=53 | | (8x=42-6x) | | n²+6n=18 | | 5.8=-6.2+z | | x2=10x=9=0 | | 5.8=6.2+z | | 5x32=45 | | -6q=72 | | 5m+4^2=0 |

Equations solver categories